
Int. J. Hear Moss Transfer. Vol. 23, pp. 539-546. 

Pergamon Press Ltd. 1980. Printed in Great Britain 

APPROXIMATE EQUATIONS FOR FORCED- 
CONVECTION CONDENSATION IN THE PRESENCE 
OF A NON-CONDENSING GAS ON A FLAT PLATE 

AND HORIZONTAL TUBE 

J. W. ROSE 

Department of Mechanical Engineering, Queen Mary College, 
University of London 

(Received 6 November 1978 and in revised form 13 June 1979) 

Abstract - For condensation from a vapout-gas mixture flowing parallel to a plane horizontal condensing 
surface and normal to a horizontal tube, approximate theoretically-based equations are obtained relating the 
mass flux of vapour to the condensing surface (condensation rate) to the free-stream and condensate surface 
conditions. These may be used with suitable equations, giving the heat flux (or condensation rate) in terms of 
the temperature drop across the condensate film, to calculate the heat flux for given free-stream velocity, 
composition and temperature and condenser surface temperature. The equations are designed to be correct 
for the limiting cases of zero and infinite condensation rate. For the flat-plate case the present result agrees 
very closely with earlier numerical solutions covering a wide range of condensation rates and for various 
values of Schmidt number. For the horizontal-cylinder case the present result is in good agreement with 
experimental data for steam-air mixtures covering wide ranges of velocity, composition, condensation rate 

and pressure. 
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NOMENCLATURE 

diffusion coefficient ; 
diameter of tube ; 
specific gravitational force; 
mean mass-transfer coefficient mD/( w,, 
- Woo), [see also equation (20)] ; 
lwd mass-transfer coefficient m,$ 

PD 
(wom - wuo) = (W”, - W”,) 0 

[see also equation (6)] ; 

specific enthalpy of evaporation; 
thermal conductivity of condensate; 
molar mass of non-condensing gas; 
molar mass of vapour; 
local (inward) surface vapour mass flux, 
condensation rate; 
mean (inward) surface vapour mass flux, 
condensation rate; 
diffusive component of local (inward) 
surface vapour mass flux ; 
diffusive component of mean (inward) 
surface vapour mass flux; 
mean Nusselt number ; 
pressure of vapour-gas mixture; 
free-stream partial pressure of air ; 
saturation pressure at temperature T; 
partial pressure of steam adjacent to 
condensate surface; 
free-stream partial pressure of steam; 
Prandtl number; 
mean heat flux ; 
specific ideal-gas constant of air ; 
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specific ideal-gas constant of steam; 
mean Reynolds number, u,pd/p; 
local Reynolds number, u,px/p; 

(Pc&/Pk41’2 ; 
Schmidt number; 
mean Sherwood number, g,d/pD; 

local Sherwood number, g,,x/pD = 

a4 x ( > ay 0; 

thermodynamic temperature; 
temperature at vapour-condensate 
interface; 
temperature at plate or tube surface; 
free-stream temperature; 
free-stream velocity; 
y-direction velocity at y = 0; 
mean outward surface radial velocity; 
mass fraction of non-condensing gas; 
mass fraction of non-condensing gas at 
vapour-condensate interface; 
free-stream mass fraction of non- 
condensing gas ; 
mass fraction of vapour at vapour- 
condensate interface; 
free-stream mass fraction of vapour ; 
distance measured along surface; 
distance measured normal to x-direction ; 
ShRe-‘12 ; 
Sh,Re; II2 ; 
ShlRe-“2 ; 
Sh2Re-‘j2 

539 



ROSE 540 

Greek symbols 

J. W 

_ “0 R4!2, 

UT 
[see also equation (7)] ; 

- VsRe’12 
u 

, [see also equation (22)] ; 
cc 

P - P,, ; 
T’,‘- T,; 

P,,IP; 
viscosity, viscosity of vapour-gas 
mixture; 

viscosity of condensate; 

AP,IP ; 
density, density of vapour-gas mixture; 
density of condensate; 

density of vapour-gas mixture at 
vapour-condensate interface ; 
free-stream density of vapour-gas 
mixture; 

(W - ~o)/(~, - Wo); 
W,IWo. 

INTRODUCTION 

WITH the aid of computers, ‘exact’ numerical solutions 
may be obtained for many problems in fluid mechanics 
and heat transfer. Variations in thermophysical pro- 

perties with temperature, pressure and composition 
may be included. In practice however, approximate 
results, giving relatively simple relations between the 

surface transfer parameters, are often adequate owing 
to non-ideal geometry or imprecisely known property 

values. 
The present work provides, for the problem of 

condensation in the presence of a non-condensing gas, 
approximate equations for calculating the transfer- 

rate of vapour, to the condensate surface. The results 
are based on the uniform-property boundary-layer 

equations. For the flat plate case, numerical solutions 
have earlier been obtained for a wide variety of 
circumstances. The present result is in excellent agree- 

ment with the numerical solutions. For the case of the 
horizontal tube, experimental data are available only 
for the steam-air case. The present result agrees well 

with these data. 

HORIZONTAL PLATE 

The problem considered is illustrated in Fig. 1. The 
momentum, energy and diffusion equations for the 

uao, Wm,Tm - 

,,, Wo,To,~=o 

x T ’ w ‘Condensate film 

FIG. 1. Condensation on a horizontal plane surface 

vapour-gas mixture and the momentum and energy 
equations for the condensate film have to be solved 
simultaneously subject to boundary conditions of 

specified uniform u, , T r, W 1 and T,, together %ith 
the interface conditions of continuity of velocity. shear 

stress and temperature, conservation of energy and 
mass of the condensing constituent and the condition 
that the interface mass flux of the non-condensing gas 
is zero. 

Koh [l] and recently Fujii, Lehara, Mihara and 
Kato [2] have obtained numerical solutions for ;L 

variety of circumstances. For the usual case where 
p,p,/pp >> 1 Sparrow, Minkowycz and Saddy [3] have 
indicated that it is permissible to take the interface 
velocity to be zero when considering the vapour~ gas 
boundary layer. They further simplified the problem 
by neglecting the contribution to the heat flux in the 
condensate arising from the temperature gradient 
in the vapour-gas mixture, so that the energy 

equation for the vapour--gas mixture is no longer 
required. As will be seen, the present approximate 

result for the simplified case considered by Sparrow c’f 
u[. [3] is in excellent agreement also with the solutions 
of Koh [1] and of Fujii et al. [2] confirming the 

validity of the simplifying approximations. 
The analysis of Sparrow et al. [3] indicates that the 

thickening of the condensate film leads to a decrease in 
condensation rate in the direction of flow such that L’~ 

x x~ I”. Furthermore, for thermodynamic equilib- 
rium at the liquid-vapour interface, the Interface 

temperature and composition of the vapour gas mix- 
ture are independent of x. Under these conditions the 

diffusion problem for the vapour-gas boundary layer 
becomes identical to the case of heat transfer for flow 
over an isothermal plate with surface suction and I o x 
x-.“~, i.e. the governing equations and boundary 
conditions for the two problems. when appropriately 

non-dimensionalized, are the same. 
An approximate equation (equation (3) of 14)) for 

the heat-transfer problem, which relates the local 

surface heat- and mass-transfer parameters, hab been 
given. This equation is correct for zero and infinite 
suction and agrees very closely with ‘exact’ numerical 
solutions for intermediate values of the suction para- 
meter and for various values of Prandtl number. The 
corresponding equation for the present case is ob- 
tained by replacing the local Nusselt number of the 
earlier problem by a local Sherwood number defined : 

In addition, the Schmidt number replaces the Prandtl 
number so that we have for the present case: 

Sh,Re;“’ = ({ 1 + afi”,Sc’) ’ + /3,Sc (2) 

where 

i = Sc’ ‘2(27.8 + 75.9 SC’.~‘~ + 657 SC) ’ ’ (3) 
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@, = - (vo/u,)Re:” 

a = 0.941 

b = 1.14 

c = 0.93. 

(4) 

In the present problem, we have a second equation 
relating the quantities in equation (2) given by the 
condition that the interface is impermeable to the non- 
condensing gas. This gives 

pD dW 
m, =: - p, = - -- - c > wa 8Y 0 

(5) 

so that the mass-transfer coefficient 

41 - Wvo) m, 
9 mx = (W”, - W”,) = T-z (6) 

where 

0 = w,/w, 

and 

8, = (m~/pu~)~e~12 (7) 

Sh,Rei’12 = jT,Sc/(l - 0). (8) 

Equations (2) and (8) may thus be solved simul- 
taneously to give, for specified free-stream conditions, 
the relationship between the vapour mass flux to the 
condensate surface and the composition at the in- 
terface. Elimina~ng either z, (= S&Be; ‘I’) or & we 
obtain 

or 

w = { 1+ &Sc( 1+ 0.941/l;++ SP3)/1} - * (9) 

2, + 0.941 SC-o.2r(l -c0)1%:~14-[/o = 0. 

(10) 

If w is required for a given value of p, this may be 
obtained directly from equation (9); otherwise equa- 
tion (9) or (10) must be solved by iteration. To obtain 
somewhat less accurate results, which may be used as 
starting values in the iterative process, the following 
may be used: 

B = {1 + 4.57sc-“~045(1 - cJ)/Cu)‘~~ - 1 (11) -.. X 2.28 SC’.‘~ 

z = {l + 4.57Sc-“~041(1 - U,)i’2 - 1 
X 2.28S~-~~‘~(l - w) . 

(12) 

The above were obtained by redetermining the con- 
stants a and c in the heat-transfer problem [4] with b 
forced to unity. This gave [for use in equation (2)] a = 
1.142, b = 1, c = 0.96. 

In Table 1, the results given by equation (9) are 
compared with the numerical solutions given by 
Sparrow et ai. [3]. As may be seen the agreement is 
very good. 

As indicated earlier, only when the simplifying 
assumptions used by Sparrow et al. [3] are adopted, 

Table 1. Condensation on a flat plate. Comparison of 
numerical solutions of Sparrow et al. [3] for SC = 0.55 with 

values given by equation (9) 

0.025 
0.05 
0.075 
0.1 
0.125 
0.15 
0.175 
0.2 
0.225 
0.25 
0.3 
0.35 
0.5 
0.75 
1.0 
1.5 
2.0 
2.5 
3.0 
5.0 

W 

Sparrow Equation (9) 

0.951 0.951 
0.905 0.905 
0.863 0.863 
0.823 0.824 
0.787 0.788 
0.752 0.753 
0.720 0.721 
0.690 0.69f 
0.662 0.663 
0.635 0.637 
0.587 0.588 
0.543 0.545 
0.438 0.439 
0.319 0.318 
0.241 0.240 
0.149 0.149 
0.100 0.100 
0.0717 0.0713 
0.0532 0.0532 
0.0216 0.0217 

does the condensation problem become strictly identi- 
cal to the previously considered [4] problem of heat 
transfer with surface suction. Koh [l] and Fujii et al. 
[2] did not make these assumptions. When the 
condition of velocity continuity at the vapour-liquid 
interface is used rather than taking the interface 
velocity to be zero when treating the vapour-gas 
boundary layer, the results are found to depend on the 

parameter r = (P,P,/P~~) r12. Koh [l] obtained numeri- 
cal solutions for r = 500,100 and 10 for SC = 0.5 and 
1.0. Fujii et al. [2] used r = 1000,500 and 100 and SC = 
0.2,0.5,1.0 and 1.5. Examination of these data reveals 
that only for the smallest value of r, i.e. 10, do the 
results depend significantly on this parameter suggest- 
ing that, for the usual case where the vapour is not 
close to its critical state, the approximation used by 
Sparrow et al. [3] is valid. 

In Fig. 2, where the rest&s of Koh [l] and Fujii et ai, 
[2] are compared with equation (lo), the data of Koh 
[l] for r = 10 have been omitted. The good agreement 
between the exact numerical solutions and equation 
(10) confirms the validity of the present result and of 
the simpli~cations made by Sparrow et al. [3]. 

HORIZONTAL CYLINDER 

Before discussing the condensation problem, we 
first consider the related case of heat transfer during 
flow normal to a cylinder with surface suction. 

For a specified distribution of surface radial ve- 
locity, dimensional analysis suggests : 

Nu = TttRe, B, fV (13) 

where Nu and fi are mean values. By analogy with the 
flat plate case, and for an appropriately specified 

H.M.T. ?314--1 
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FIG. 2. Condensation on a horizontal plane surface. Comparison of numerical results of Koh [l] and Fujii et 
al. [2] with equation (10) (represented by the lines). Note: The accuracy of some of the data given in [Z] has 

been improved [12]. Figure 2 incorporates the revised values. 

dtstribution of surface radial velocity, we might expect 
equation (13) to reduce to : 

NuRe- ‘j2 = &(p, Pr). (14) 

Equation (14) has the correct form for the limiting case 
of infinite suction and is supported by experimental 
data over a wide range of Reynolds number for zero 
suction. 

For the zero-suction case, boundary-layer sepa- 
ration precludes straightforward analysis. However, 
experimental data (see for instance McAdams [s]) 
may be represented over a wide range of Reynolds 
number, with sufficient accuracy for the present pur- 
poses by: 

NuRe-“2 = 0.57 Pr”3 (15) 

(10 < Re < 104). 

As in the case of the flat plate, the boundary layer 
thins with increasing suction and the separation point 
moves towards the rear of cylinder [6]. For the infinite 
suction limit, as the boundary-layer thickness ap- 
proaches zero and separation is completely sup- 
pressed, an energy balance yields : 

NuRe-“2 = BPr. 

In general therefore we propose: 

NuRe- Ii2 = 0.57 Pr”3{3(fi, Pr) + /?Pr 

where 

C3(0, Pr) = 1 

&(‘X, Pr) = 0 

and suggest, on the basis of [4] : 

&(P, Pr) = (1 + ap”Pfm 1 

(16) 

(17) 

(18) 

where a, b and c are positive constants near to umty. 
Turning now to the condensation problem, for the 

flat plate case where the condensate motion results 
solely from the vapour flow, it was seen that the 
velocity of the condensate surface could be neglected 
when considering the vapourrgas boundary layer. In a 
case when the condensing surface is not horizontal, 
gravity also plays a role in the flow of the condensate 
film. However, for condensation on horizontal tubes. 
the gravity-induced condensate velocity is low, even at 
high condensation rates, owing to the small effective 
height of the condensing surface. Thus, in this case. 
neglect of the condensate velocity when considering 
the vapour-gas boundary layer will generally be 
satisfactory. 

As in the case of the flat plate, the diffusion equation 
for the vapourgas boundary layer is identical in form 
to the energy equation in the corresponding heat- 
transfer problem discussed above so that. if it is 
assumed (as is true for the normal surface velocity in 
the flat plate problem) that the distribution of surface 

radial velocity is the same in both cases, we have. for 
the vapour-gas boundary layer. by reference to equa- 

tion (17): 

ShRe- “’ = 0.57 SC’ 3t3(/3, SC) + /LTc (1’)) 

The condition that the condensate surface is imperme- 
able to the non-condensing gas gives: 

41 - W”,) 111 
Ym = W,_-w~O= 1 _ w 120) 

(21) 
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j? = (m/pu,)Re’” 

ShRi~-l’~ = flSc/(l - w). 

(22) 

(23) 

Thus, with an expression for &(p,Sc), equatiogs (19) 
and (23) may be solved simultaneously to give the 
relationship between w and either of the parameters 
containing the condensation rate, i.e. ShRe- li2 and B. 

One way to proceed at this point would be to adopt 
equation (18) for & and, by comparing the result 
obtained with experimental data, obtain values of the 
constants a, b and c so as to achieve the best fit. This, 
ideally, would require accurate measurements for a 
wide range of vapour velocity, composition and pres- 
sure and for different vapour-gas combinations. 
Satisfactory data for steam-air mixtures only are at 
present availabte. In view of this and of the fact that 
good agreement with the available data was found 
when tentatively using the convenient values a = b = 
c = 1, further refinement of the values is postponed. 

With the above values equations (18) (with SC 
replacing Pr) (19) and (23) give the following equiva- 
lent results : 

co = (1 + 1.75j9sc2’yl + /3Sc))--’ 

or 

f24a) 

w = (1 + z-1 - Cl + 2z-’ 

+ ~-~(l - 2.28S~“~)]“~),‘2 (24b) 

or 

z = {[1 -t 2.28s~“~ 

x (0-1 - 1)]1’2 - 1}/2(1 - 0) (24c) 

or 

@ = {[l + 2.28s~“~ 

x (w-l - l)]‘” - 1)/2 SC (24d) 

where 

z = ShRe-1’2. (25) 

A correlation based on measurements for steam-air 
mixtures for a wide range of Reynolds number, air 
concentration and pressure has been given by Berman 
[7]. This may be written : 

#kiRT = m _ 0.4~&‘i*n-‘f3e-0.6 

AP,D B B (26) 

where 

AP, = P,, - Pxo 

‘ce = APJP 

Es = P,,/P. 

Using the Gibbs-Dalton ideal-gas mixture relations, 
and taking RJR, = 0.622, equation (26) gives: 

z, = Sh,Re-1’2 = 
0.455 

(W, - W,)“J 

W, (1 - 0.378 w,y33 

’ e (1 - 0.378 Wo)2’3 
(27) 

where the density in z1 and S/a1 is pm. When the 
temperature dependence of the density is neglected in 
comparison with density variations arising from com- 
position differences we obtain : 

z2 = Sh,Re-‘/2 = 
0.455 

(W, - W,p 

W, (1 - 0.378 Wo)1’3 
’ e (1 _ 0.378 w,)O.‘367 (28) 

where the density in z2 and Sh, is po. 
As may be seen from equations (27) and (28), z, as 

given by the correIation of Berman [7], depends 
separately on IV0 and W, and will also differ accord- 
ing to the choice of density. Equation (24~) on the 
other hand, indicates that z depends only on the ratio 
W,/W, (for a given SC) and stems from a uniform- 
density analysis. 

In Table 2 values of z given by equation (24~) with SC 
= 0.55 (a mean value for steam-air mixtures) are 
compared with z1 and z2 given by equations (27) and 

(28). 
It may be seen that the values of z given by the 

Berman correlation are not greatly affected by the 
choice of density and that the dependance of z on W, 
for a given value of the ratio W,IW, is relatively weak. 
Moreover, the values are in quite good general agree- 
ment with those given by equation (24~). When 
considered in the light of the scatter of the data used by 
Berman, the comparisons given in Table 2 are very 
satisfactory. 

Further measurements have recently been reported 
by Mills, Tan and Chung [S]. Mills et al. measured the 
heat-transfer rate to a horizontal water-cooled con- 
denser tube in a downward flowing steam-air mixture. 
Since the temperature and vapour composition at the 
condensate surface are related by the thermodynamic 
equilibrium condition, equation (24) (which relates the 
condensation rate, the remote vapour composition 
and velocity and the composition, and hence tempera- 
ture, at the condensate surface) may be used in 
conjunction with an equation relating the heat- 
transfer rate (and hence the condensation rate) to the 
temperature difference across the condensate film, to 
determine the heat-transfer rate for specified bulk 
vapour conditions and condenser tube-wall 
temperature. 

An appropriate equation for the condensate film has 
been obtained by Fujii, Uehara and Kurato [!I] : 
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Table 2. Condensation from steam-air mixture on a horizontal tube. Comparison of the Berman 171 correlation [see 
equations (27) and (28)] with the present result [equation (24c)J 

W, z 

0.001 ZI 
ZZ 

0.002 ZI 
Z2 

0.005 Z1 
22 

O.O! it 
-I2 

0.02 Zl 
-72 

0.05 21 
22 

0.1 Zl 
=2 

0.2 Zl 
Z2 

0.5 21 
-2 

W”IW, 1.5 

0.59 

0.54 
0.54 

0.57 
0.57 

0.60 
0.60 

0.63 
0.63 

0.66 
0.66 

0.7 1 
0.70 

0.74 
0.73 

0.78 
0.75 

0.84 
0.75 

3 

0.88 

0.68 
0.68 

0.72 
0.72 

0.76 
0.76 

0.80 
0.79 

0.84 
0.83 

0.91 
0.87 

0.97 
0.90 

1.07 
0.90 

5 10 15 25 35 

1.19 1.79 2.26 3.01 3.62 

0.91 1.38 1.79 2.50 3.13 
0.90 1.38 1.78 2.48 3.09 

0.95 1.45 1.88 2.64 3.30 
0.95 1.44 1.86 2.59 3.22 

1.01 1.55 2.02 2.86 3.61 
1.00 1.53 1.97 2.13 3.38 

1.06 1.65 2.16 3.09 3.96 
1.05 1.59 3.04 2.81 3.4s 

1.12 1.76 2.35 3.47 4.62 
1.09 1.64 2.10 2.83 3.42 

1.23 2.02 2.85 
1.14 1.67 2.08 

1.36 
1.1s 

Taking the vapour as an ideal-gas mixture, the in- 
terface equilibrium condition gives : 

p - P,,,(Td w, = ____~___ 

p - {1 - w”I~,)Jpsa,(~o) 
(30) 

For the vapour conditions and tube-wall tempera- 
tures used by Mills et al. [8] equations (24), (29) and 
(30) were solved simultaneously (using a suitable 
iterative technique and taking Q = mhze) to de- 
termine the corresponding heat fluxes. These are 
compared with the observed values in Table 3. The 
properties of the condensate film were evaluated at T, 
+ (T, - 7’,,,)/3 as suggested by Sparrow et al. [3]. The 
specific enthalpy of phase change was evaluated at T,. 
For the vapour-gas mixture the density and viscosity 
were taken as the arithmetic means of their values at, 
and remote from, the vapour-condensate interface, 
the densities being evaluated on the basis of ideal-gas 
mixtures and the viscosities by the method of Wilke 
[lo]. The diffusion coefficient was obtained from: 

D 

m2/s 
(31) 

as recommended by Fujii, Kato and Mihara [l l] and 
taken at (T, + T,)/2. 

*It may be noted that, for the small values of vapour 
velocity used by Mills et al. [S], the results obtained differed 
only slightly from those found when setting u, = 0 in 
equation (29) so that the result of Fujii et nl. [9], for the 
condensate film, reduces to the simple Nusselt equation. 

50 

4.40 

3.97 
3.90 

4.21 
4.06 

4.66 
4.23 

5.24 
4.27 

70 IOI! 

5.27 638 

4.99 6.36 
4.86 6.13 

532 6.84 
5.04 6.33 

5.99 1.93 
5.20 6.44 

6.99 
5 16 

As may be seen from the calculated temperature 
differences in the vapour phase and across the conden- 
sate film*, the measurements of Mills et al. [S] extend 
from those cases where the dominant resistance is that 
of the condensate film (lowest gas concentrations and 
highest vapour velocities) to those where the gas-phase 
resistance is the controlling factor. The fact that the 
agreement between the observed and calculated values 
is excellent over the whole range lends strong support 
to equation (24). 

CONCLUDING REMARKS 

Perhaps the most important practical result of the 
present work is that for condensation on a horizontal 
tube [equations (24)]. The fact that this is designed to 
be correct for high and low condensation rates, 
together with the excellent agreement with a wide 
range of steam-air experimental data, suggests that 
the equation should be generally satisfactory for other 
vapour-gas combinations. The assumption that the 
distribution of surface radial velocity is such as to 
permit a result of the form: 

ShRe- 1:2 = F(b,Sc), (32) 

as is the case for the flat plate when v0 x x ’ ‘. is 

probably more realistic in practice than the widely- 
used assumption that the surface temperature of a 
condenser tube is uniform. 
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Table 3. Condensation on a horizontal tube.. Comparison of observations of Mills et al. [S] 
with values calculated using equation (24) for the vapour-gas layer, equation (29) for the 

condensate film and the interface condition equation (30) 

100 w, 

0.11 
0.45 
0.75 
1.01 
1.30 
1.62 
1.94 
2.29 
2.62 
2.94 
3.70 
4.13 
5.43 
6.30 
7.10 
7.88 

a, 7-m __ - 
(m/s) (K) 

Mills 

0.689 331.0 
0.811 315.8 
0.716 317.7 
0.674 319.1 
0.601 321.0 
0.591 321.2 
0.552 322.2 
0.479 324.9 
0.439 326.6 
0.415 327.6 
0.494 316.1 
0.467 316.8 
0.372 316.0 
0.334 316.4 
0.320 318.5 
0.299 320.0 

T, T, - TO TO - T, Heat flux 
- 
(K) -0 (K) #W/m’) 

Present Mills Present 
calculation calculation 

322.8 0.36 7.84 95.6 95.1 
308.4 1.35 6.05 67.3 71.2 
308.6 2.60 6.50 69.0 74.1 
309.3 3.44 6.36 68.5 72.2 
309.6 4.85 6.55 68.5 72.9 
309.5 5.61 6.09 65.7 68.4 
309.1 7.01 6.09 66.0 67.6 
309.8 8.96 6.14 67.3 67.5 
310.1 10.49 6.01 66.1 66.2 
309.8 11.93 5.87 65.4 64.8 
299.4 12.34 4.36 52.7 49.1 
298.6 13.98 4.22 51.6 47.8 
294.8 17.90 3.30 41.5 39.0 
293.4 20.07 2.93 39.8 35.5 
292.9 22.70 2.90 37.8 35.5 
295.2 22.22 2.58 34.7 32.8 
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EQUATION APPROCHEES POUR LA CONDENSATION AVEC CONVECTION FORCEE, 
EN PRESENCE DUN GAZ INCONDENSABLE, SUR UNE PLAQUE PLANE 

ET UN TUBE HORIZONTAL 

RCum6 - Pour la condensation d’un melange vapeur-gaz en mouvement parallilement a un plan 
horizontal et normalement a un tube horizontal, des equations thdoriques approchees sont obtenues qui 
relient le flux massique de vapeur a l’ecoulement libre et aux conditions de surface froide. Ceci peur 8tre utilisi 
avec des equations convenables donnant le flux de chaleur en fonction de la chute de temperature a travers le 
film de condensat, pour calculer le flux de chaleur pour une vitesse, une composition et une temperature au 
loin donnbs et une temperature de surface fix&e. Les equations sont correctes pour les cas limites de flux de 
condensat nul et infini. Dans les cas de la plaque plane, le resultat s’accorde bien avec des solutions 
numeriques anterieures qui couvrent un large domaine de flux de condensat et pour differentes valeurs du 
nombre de Schmidt. Dans le cas du cylindre horizontal, le rtsultat est en bon accord avec les don&es 
expbimentales pour des melanges vapeur d&r-air dans un large domaine de vitesse, de composition, de flux 

de condensat et de pression. 
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NliHERUNGSGLEICHUNGEN FtiR DIE KONDENSATION BEI ERZWUNGENER 
KONVEKTION IN GEGENWART EINES NICHTKONDENSIERENDEN GASES AN EINER 

EBENEN PLATTE UND AN EINEM WAAGERECHTEN ROHR 

Zusammenfassung-Fiir die Kondensation aus einem Dampf-Gas-Gemisch, welches parallel zu einer 
ebenen, waagerechten Kondensationsfliiche und senkrecht zu einem waagerechten Rohr striimt, wurden 
theoretisch begriindete Niiherungsgleichungen aufgestellt, die den Dampfmassenstrom mit der 
KondensationsflBche (Kondensationsrate) sowie mit den Bedingungen der freien Striimung und denen der 
Kondensatoberfllche verkniipfen. Diese Gleichungen kiinnen zusammen mit geeigneten Gleichungen 
angewandt werden, welche den Wlrmestrom (oder die Kondensationsrate) in AbhHngigkeit vom 
Temperaturabfall iiber den Kondensatfilm beschreiben, urn den WIrmestrom bei vorgegebener 
Geschwindigkeit, Zusammensetzung und Temperatur der ungestiirten Striimung sowie der Kondensator- 
OberfXchentemperatur zu berechnen. Die Gleichungen sind so aufgestellt, da@ sie die Grenzfglle der 
verschwindenden und der unendlichen Kondensationsrate richtig beschreiben. 

Im Fall der ebenen Platte stimmt das vorliegende Ergebnis sehr gut mit friiheren numerischen Liisungen 
iiberein, die groj?e Bereiche von Kondensationsraten und verschiedene Werte fiir die Schmidt-Zahl umfassen. 

Im Fall des waagerechten Zylinders stimmt das gegenwlrtige Ergebnis gut mit bei Wasserdampf-Luft- 
Gemischen gewonnenen Mepwerten iiberein, welche einen gro@en Bereich der Parameter Geschwindigkeit. 

Zusammensetzung, Kondensationsrate und Druck umfassen. 

IIPM6JlMXEHHbIE YPABHEHMII AJI5I PACYETA KOHflEHCAqMH IlAPA fIPM 
BbIHYXAEHHOZi KOHBEKUMH B IIPMCYTCTBMH HEKOHflEHCMPYIO~ErOCcR TA3.4 

HA IUIOCKOR I-IJIACTMHE M I-OPW30HTAJIbHOR TPY6E 

Aworaunn ~ Ana pacvera KoHneHcauIIU napa 113 noToKa napo-rasosoti Czech, sanpasnemioro 
napaN,e,IbHO nJ,OCKOi? rOpH30HTa,IbHOfi nOBepXHOCTB li IIepneH~HKyJlXpHO rOpH30HTanbHOfi Tpy6e, 

nOJLy'!eHbI np&i6JIEiXCeHHbIe ypaBHeHHK, CBR3LdBaK)UUie IWOTHOCTb nOTOKa IIapa Ha nOBepXHOCTH KOH- 

neHCaLWiH(CKOpOCTb KOHJleHCaUHH)C )‘CJlOB&iRMH BCBO6OnHOM IlOTOKe B Ha nOBepXHOCTEi KOHneHCaTa. 

3TU ypaBHeHH8 MOryT HCtlOJlb30BaTbCX COBMeCTHO C COOTBeTCTByKIl.UHMH ypaBHeHHSMEi, CBR3bIBa- 

WOUIUMA TennoeoA noToK (sim cKopocTb KoHneHcauwi) c nepenanoM TeMnepaTyp nonepeK nneww 

KofineHcaTa. am pacveTa nnoTHocTH TennoBoro noToKa npe 3anaHHbrx cropoc-rs, cocTa9e A TeMne- 

paType CMeCW B CBO6OnHOM nOTOKe, a TaKXte TeMIlepaType nOBepXHOCTH KOHneHCaTOpa. YpaBHeHHP 

cnpaeenneabl nnx IIpenenbHbIx cnyqaee HyJIeBOfi II 6eCKOHeqHOir CKOpOCTH KOHneHCaUHH. &IX CJIyYas 

LlOCKOii IIJlaCTHHbI ~3ynbTaTblXO~luOCOrnaCytoTCrCnOny~eHHblMH~Hee~HCneHHbIMH~LUeHHIMH 

B LUH~~KOM nsiana30He cKopocTeii KoHneHcau5in w npH pa3nHqHblx 3Haqemtax 9Hcna IIlMHnTa. &a 
cnyqaa rOpWSOHTanbHOr0 LWJlEiH~pa pe3yJlbTaTbI HaXOiVlTCn‘a B XOpOUIeM COOTBeTCTBRA C 3KCIIepH- 

MeHTa,,bHMMH naHHbIMU L,JE, IlapOBO3~yUlHbIX CMeCefi B IWpOKOM nHana30He H3MeHeHWII CKOpOCTH 

TeveHiu A cocTaBa Czech, a TaKxe CKO~~CTH KoHneHcauriB H nasnemifi. 


