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Abstract — For condensation from a vapour—gas mixture flowing parallel to a plane horizontal condensing
surface and normal to a horizontal tube, approximate theoretically-based equations are obtained relating the
mass flux of vapour to the condensing surface (condensation rate) to the free-stream and condensate surface
conditions. These may be used with suitable equations, giving the heat flux (or condensation rate)in terms of
the temperature drop across the condensate film, to calculate the heat flux for given free-stream velocity,
composition and temperature and condenser surface temperature. The equations are designed to be correct
for the limiting cases of zero and infinite condensation rate. For the flat-plate case the present result agrees
very closely with earlier numerical solutions covering a wide range of condensation rates and for various
values of Schmidt number. For the horizontal-cylinder case the present result is in good agreement with
experimental data for steam—air mixtures covering wide ranges of velocity, composition, condensation rate
and pressure.
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diffusion coefficient ;

diameter of tube;

specific gravitational force;

mean mass-transfer coefficient mp/(W,,,
— W), [see also equation (20)];

local mass-transfer coefficient m,p/
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[see also equation (6)];

specific enthalpy of evaporation;
thermal conductivity of condensate;
molar mass of non-condensing gas;
molar mass of vapour;

local (inward) surface vapour mass flux,
condensation rate;

mean (inward) surface vapour mass flux,
condensation rate;

diffusive component of local (inward)
surface vapour mass flux;

diffusive component of mean (inward)
surface vapour mass flux;

mean Nusselt number ;

pressure of vapour—gas mixture;
free-stream partial pressure of air;
saturation pressure at temperature T';
partial pressure of steam adjacent to
condensate surface;

free-stream partial pressure of steam ;
Prandtl number;

mean heat flux;

specific ideal-gas constant of air;
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specific ideal-gas constant of steam;
mean Reynolds number, upd/u;
local Reynolds number, u,px/u;
(Pettc/p)' 5

Schmidt number;

mean Sherwood number, g,,d/pD;

local Sherwood number, g, x/pD =

(5,

)

gmd/P D

gmd/ pOD ’

thermodynamic temperature;
temperature at  vapour-condensate
interface;

temperature at plate or tube surface;
free-stream temperature;

free-stream velocity ;

y-direction velocity at y = 0;

mean outward surface radial velocity;
mass fraction of non-condensing gas;
mass fraction of non-condensing gas at
vapour--condensate interface ;
free-stream mass fraction of non-
condensing gas;

mass fraction of vapour at vapour—
condensate interface;

free-stream mass fraction of vapour;
distance measured along surface;
distance measured normal to x-direction ;
ShRe™ V%,

ShRe 17,

Sh,Re™ 12,

ShyRe~ 12
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Greek symbols

B - :‘ORe}"’z, [see also equation (7)];

B, - kRe“z, [see also equation (22)];

AP,, P,. —Py;

AT, y N

Zgs P g at/ P >

U viscosity, viscosity of vapour—gas
mixture;

U viscosity of condensate;

m, AP,/P;

o, density, density of vapour—gas mixture;

Do density of condensate;

Po» density of vapour-gas mixture at
vapour—condensate interface;

oo free-stream density of vapour—gas
mixture;

4)’ (W - WO)/(Woc - W())’

W, W /W,

INTRODUCTION

WITH the aid of computers, ‘exact’ numerical solutions
may be obtained for many problems in fluid mechanics
and heat transfer. Variations in thermophysical pro-
perties with temperature, pressure and composition
may be included. In practice however, approximate
results, giving relatively simple relations between the
surface transfer parameters, are often adequate owing
to non-ideal geometry or imprecisely known property
values.

The present work provides, for the problem of
condensation in the presence of a non-condensing gas,
approximate equations for calculating the transfer-
rate of vapour, to the condensate surface. The results
are based on the uniform-property boundary-layer
equations. For the flat plate case, numerical solutions
have earlier been obtained for a wide variety of
circumstances. The present result is in excellent agree-
ment with the numerical solutions. For the case of the
horizontal tube, experimental data are available only
for the steam—air case. The present result agrees well
with these data.

HORIZONTAL PLATE

The problem considered is illustrated in Fig. 1. The
momentum, energy and diffusion equations for the
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Condensate film

FiG. 1. Condensation on a horizontal plane surface.

J. W. ROSE

vapour-gas mixture and the momentum and energy
equations for the condensate film have to be solved
simultaneously subject to boundary conditions of
specified uniform u,, T, W, and T, together with
the interface conditions of continuity of velocity, shear
stress and temperature, conservation of energy and
mass of the condensing constituent and the condition
that the interface mass flux of the non-condensing gas
is zero.

Koh [1] and recently Fujii, Uehara, Mihara and
Kato [2] have obtained numerical solutions for a
variety of circumstances. For the usual case where
peite/pp > 1 Sparrow, Minkowycz and Saddy [3] have
indicated that it is permissibie to take the interface
velocity to be zero when considering the vapour- gas
boundary layer. They further simplified the problem
by neglecting the contribution to the heat flux in the
condensate arising from the temperature gradient
in the vapour—gas mixture, so that the energy
equation for the vapour-gas mixture is no longer
required. As will be seen, the present approximate
result for the simplified case considered by Sparrow ¢t
al. [3] is in excellent agreement also with the solutions
of Koh [1] and of Fujii et al. [2] confirming the
validity of the simplifying approximations.

The analysis of Sparrow et al. [3] indicates that the
thickening of the condensate film leads to a decrease in
condensation rate in the direction of flow such that ¢,
o x7 2 Furthermore, for thermodynamic equilib-
rium at the liquid-vapour interface, the interface
temperature and composition of the vapour-gas mix-
ture are independent of x. Under these conditions the
diffusion problem for the vapour—gas boundary layer
becomes identical to the case of heat transfer for flow
over an isothermal plate with surface suction and ¢,
x7 12 je. the governing equations and boundary
conditions for the two problems, when appropriately
non-dimensionalized, are the same.

An approximate equation (equation (3) of [4]) for
the heat-transfer problem, which relates the local
surface heat- and mass-transfer parameters, has been
given. This equation is correct for zero and infinite
suction and agrees very closely with ‘exact’ numerical
solutions for intermediate values of the suction para-
meter and for various values of Prandtl number. The
corresponding equation for the present case is ob-
tained by replacing the local Nusselt number of the
earlier problem by a local Sherwood number defined:

(1)
In addition, the Schmidt number replaces the Prandtl
number so that we have for the present case:

SheRe ' = ({1 +apiSct ' + B.Sc (2)
where

{=Sc"?(27.8 4+ 759 5¢°39° + 657 Sc) ™' ¢
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Be= —(vo/ux)Re;" “
a=10.941

b=114

c =093

In the present problem, we have a second equation
relating the quantities in equation (2), given by the
condition that the interface is impermeable to the non-
condensing gas. This gives

e s T
so0 that the mass-transfer coefficient
o e e
where
w=W_ W,
and
B = (m./pu)Re; Y
Sh.Re;'?* = B, Sc/(1 — w). 8)

Equations (2) and (8) may thus be solved simul-
taneously to give, for specified free-stream conditions,
the relationship between the vapour mass flux to the
condensate surface and the composition at the in-
terface. Eliminating either z, (=Sh,Re; V%) or B, we
obtain

o = {1+B8,Sc(1+0.941 L1+ S093) 1=t (9)
or

2, + 0941 8¢ 021 — @) 142214 Lo = Q.
(10)

If @ is required for a given value of §, this may be
obtained directly from equation (9); otherwise equa-
tion (9) or (10) must be solved by iteration. To obtain
somewhat less accurate results, which may be used as
starting values in the iterative process, the following
may be used:

_ {1+ 4575741 ~ )/} - 1

B 228 5c0 9% (1)
{1 4457857001 - w)w}'? — 1
== 2285¢ %1 — w) - (12)

The above were obtained by redetermining the con-
stants a and ¢ in the heat-transfer problem [4] with b
forced to unity. This gave [for use in equation (2)] a =
1.142, 6 = 1, ¢ = 0.96.

In Table 1, the results given by equation (9) are
compared with the numerical solutions given by
Sparrow et al. [3]. As may be seen the agreement is
very good.

As indicated earlier, only when the simplifying
assumptions used by Sparrow et al. [3] are adopted,
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Table 1. Condensation on a flat plate. Comparison of
numerical solutions of Sparrow et al. [3] for S¢ = 0.55 with
values given by equation {9)

w
B Sparrow Equation (9)
0.025 0.951 0.951
0.05 0.905 0.905
0.075 0.863 0.863
0.1 0.823 0.824
0.125 0.787 0.788
0.15 0.752 0.753
0.175 0.720 0.721
02 0.690 0.691
0.225 0.662 0.663
0.25 0.635 0.637
0.3 0.587 0.588
0.35 0.543 0.545
0.5 0.438 0.439
0.75 0.319 0.318
1.0 0.241 0.240
1.5 0.149 0.149
20 0.100 0.100
25 0.0717 0.0713
3.0 0.0532 0.0532
50 0.0216 0.0217

does the condensation problem become strictly identi-
cal to the previously considered [4] problem of heat
transfer with surface suction. Koh [1] and Fujii ez al.
[2] did not make these assumptions. When the
condition of velocity continuity at the vapour—liquid
interface is used rather than taking the interface
velocity to be zero when treating the vapour-gas
boundary layer, the results are found to depend on the
parameter r = (pu./pu)' . Koh [1] obtained numeri-
cal solutions for r = 500, 100 and 10 for S¢ = 0.5 and
1.0. Fujii et al. [2] used r = 1000,500 and 100 and S¢ =
0.2,0.5, 1.0 and 1.5. Examination of these data reveals
that only for the smallest value of r, i.e. 10, do the
results depend significantly on this parameter suggest-
ing that, for the usual case where the vapour is not
close to its critical state, the approximation used by
Sparrow et al. [3] is valid.

In Fig. 2, where the results of Koh [1] and Fujii ez al,
[2] are compared with equation (10), the data of Koh
[1]for » = 10 have been omitted. The good agreement
between the exact numerical solutions and equation
(10) confirms the validity of the present result and of
the simplifications made by Spatrow et al. [3].

HORIZONTAL CYLINDER

Before discussing the condensation problem, we
first consider the related case of heat transfer during
flow normal to a cylinder with surface suction.

For a specified distribution of surface radial ve-
locity, dimensional analysis suggests:

Nu = ¢{(Re, B, Pr) (13)

where Nu and j are mean values. By analogy with the
flat plate case, and for an appropriately specified



542 J. W. ROSE

Sh,Re, /2

z=

F1G. 2. Condensation on a horizontal plane surface. Comparison of numerical results of Koh [ 1] and Fujii e
al. [2] with equation (10) (represented by the lines). Note: The accuracy of some of the data given in [2] has
been improved [12]. Figure 2 incorporates the revised values.

distribution of surface radial velocity, we might expect
equation (13) to reduce to:

NuRe ' = £,(B, Pr). (14)

Equation (14) has the correct form for the limiting case
of infinite suction and is supported by experimental
data over a wide range of Reynolds number for zero
suction.

For the zero-suction case, boundary-layer sepa-
ration precludes straightforward analysis. However,
experimental data (see for instance McAdams [5])
may be represented over a wide range of Reynolds
number, with sufficient accuracy for the present pur-
poses by:

NuRe ‘2 =0.57Pr'?
(10 < Re < 10%).

(15)

As in the case of the flat plate, the boundary layer
thins with increasing suction and the separation point
moves towards the rear of cylinder [6]. For the infinite
suction limit, as the boundary-layer thickness ap-
proaches zero and separation is completely sup-

pressed, an energy balance yields:
NuRe '? = BPr. (16)

In general therefore we propose:

NuRe V2 = Q.57 Pri3E,(B,Pr) + BPr  (17)
where
£4(0,Pr)=1
E3(%, Pry=0
and suggest, on the basis of [4]:
&3, Pry = (1 + ap?Pr)”! (18)

where a, b and ¢ are positive constants near to unity.

Turning now to the condensation problem, for the
flat plate case where the condensate motion results
solely from the vapour flow, it was seen that the
velocity of the condensate surface could be neglected
when considering the vapour—gas boundary layer. Ina
case when the condensing surface is not horizontal,
gravity also plays a role in the flow of the condensate
film. However, for condensation on horizontal tubes,
the gravity-induced condensate velocity is low, even at
high condensation rates, owing to the small effective
height of the condensing surface. Thus, in this case,
neglect of the condensate velocity when considering
the vapour-gas boundary layer will generally be
satisfactory.

As in the case of the flat plate, the diffusion equation
for the vapour—gas boundary layer is identical in form
to the energy equation in the corresponding heat-
transfer problem discussed above so that, if it is
assumed (as is true for the normal surface velocity in
the flat plate problem) that the distribution of surface
radial velocity is the same in both cases, we have, for
the vapour-gas boundary layer, by reference to equa-
tion (17):

ShRe™ V%2 = 0.57Sc'?&4(B,S¢) + BSc (19)

The condition that the condensate surface is imperme-
able to the non-condensing gas gives:

Im w,, —

_ml =Wy m 120)
Wu() l-w

d
Sh—i'd— m

_gmd _ md (21)
pD  pD(1 — w)
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22)
(23)

B = (m/pu,)Re'?
ShRe™1? = BSc/(1 ~ w).

Thus, with an expression for &,(B, Sc), equations {19)
and (23) may be solved simultaneously to give the
relationship between @ and either of the parameters
containing the condensation rate, i.e. ShRe” 12 and 8.

One way to proceed at this point would be to adopt
equation (18) for ¢; and, by comparing the result
obtained with experimental data, obtain values of the
constants a, b and c so as to achieve the best fit. This,
ideally, would require accurate measurements for a
wide range of vapour velocity, composition and pres-
sure and for different vapour—gas combinations.
Satisfactory data for steam-air mixtures only are at
present available. In view of this and of the fact that
good agreement with the available data was found
when tentatively using the convenient valuesa = b =
¢ = 1, further refinement of the values is postponed.

With the above values equations (18) {(with Sc
replacing Pr) (19) and (23) give the following equiva-
lent results:

o = {1 + L75BSc*P(1 + BSc)} ™

or

(24a)

o={1+z"1'-[1+2z7!
+ 2731 — 228 Sc' 322 (24b)
or
z = {[1+ 2288c'"
x @ ' = 1)]'"? - 1}/2(1 - @) (24c)
or
B ={[1+ 22887
x (@™t — ]2 ~ 1}/28c (24d)
where

z = ShRe™ 12, (25)

A correlation based on measurements for steam-—air
mixtures for a wide range of Reynolds number, air
concentration and pressure has been given by Berman
[7]. This may be written:

mdR, T,

APD =047 Re”zn,' ”38; 0.6 (26}
where
APs = Psao - P;O
7, = AP/P
& =P,./P.

Using the Gibbs~Dalton ideal-gas mixture relations,
and taking R /R, = 0.622, equation (26) gives:
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0.455
= BRI —
zy = ShyRe Wa—WB
_ 0.933
Wo (1-0378W,) on

X WS (10378 W, )PP

where the density in z, and Sh, is p,. When the
temperature dependence of the density is neglected in
comparison with density variations arising from com-
position differences we obtain:

0.455
= Sh,Re~12 = o1
Zy S 2Re (Wo — Woo)lla
Wo (1 — 0378 Woli3

*Wos (- 03w e Y
where the density in z, and Sh, is p,.

As may be seen from equations (27) and (28), z, as
given by the correlation of Berman [7], depends
separately on W, and W, and will also differ accord-
ing to the choice of density. Equation (24¢) on the
other hand, indicates that z depends only on the ratio
W /W, (for a given Sc) and stems from a uniform-
density analysis. .

In Table 2 values of z given by equation (24c) with Sc¢
= 0.55 (a2 mean value for steam-air mixtures) are
compared with z, and z, given by equations (27) and
{28).

It may be seen that the values of z given by the
Berman correlation are not greatly affected by the
choice of density and that the dependance of zon W,
for a given value of the ratio W, /W  is relatively weak.
Moreover, the values are in quite good general agree-
ment with those given by equation (24c). When
considered in the light of the scatter of the data used by
Berman, the comparisons given in Table 2 are very
satisfactory.

Further measurements have recently been reported
by Mills, Tan and Chung [8]. Mills et al. measured the
heat-transfer rate to a horizontal water-cooled con-
denser tube in a downward flowing steam—air mixture.
Since the temperature and vapour composition at the
condensate surface are related by the thermodynamic
equilibrium condition, equation (24) (which relates the
condensation rate, the remote vapour composition
and velocity and the composition, and hence tempera-
ture, at the condensate surface) may be used in
conjunction with an equation relating the heat-
transfer rate (and hence the condensation rate) to the
temperature difference across the condensate film, to
determine the heat-transfer rate for specified bulk
vapour conditions and condenser tube-wall
temperature.

An appropriate equation for the condensate film has
been obtained by Fujii, Uehara and Kurato [9]:

Qd u,,opcd)2 U php, \*?
=Jo6s6("=PlY (1 4 L. Fese
AT, . t kAT

0.276 p2d*h, g) V¢
0276 p:dhsgd 1™ 39,
kAT
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Table 2. Condensation from steam-air mixture on a horizontal tube. Comparison of the Berman [7] correlation [see
equations (27) and (28)] with the present result [equation (24c)] '

Wo/W., 15 3 5 10
W, : 059 088 119 179
2 054 068 091 138
0.001 2, 054 068 090 138
2 057 072 095 145
0.002 2 057 072 095 144
2, 060 076 101 155
0.005 - 060 076 100 153
00! 5 063 080 106 165
01 2 063 079 105 159
2 066 084 112 176
0.0 . 066 08 109 164
005 2, 071 091 123 202
: 2 070 087 114 167
ol 2 074 097 136
: 2 073 090 115
078 107
5 z, |
02 . 075 090
05 zy 0.84

50 70 100

15 25 35
2.26 3.01 3.62 4.40 527 6.338 )
179 2.50 313 397 4.99 6.36
1.78 2.48 3.09 350 4.86 6.13
1.88 2.64 330 4.21 532 6.84
1.86 2.59 3.22 4.06 504 6.33
202 2.86 3.61 4.66 5.99 793
197 2.73 3.38 423 5.20 6.44
2.16 3.09 396 524 6.99
204 2.81 345 427 5.16
2.35 347 4.62
2.10 2.83 342
2.85
2.08

Taking the vapour as an ideal-gas mixture, the in-
terface equilibrium condition gives:

W. = pP— Psat(TO)
TP — {1 — (M/M))P,(To)

(30)

For the vapour conditions and tube-wall tempera-
tures used by Mills et al. [8] equations (24), (29) and
(30) were solved simultaneously (using a suitable
iterative technique and taking Q = mhy) to de-
termine the corresponding heat fluxes. These are
compared with the observed values in Table 3. The
properties of the condensate film were evaluated at T,
+ (T¢ — T,)/3 as suggested by Sparrow et al. [3]. The
specific enthalpy of phase change was evaluated at T,
For the vapour—gas mixture the density and viscosity
were taken as the arithmetic means of their values at,
and remote from, the vapour—condensate interface,
the densities being evaluated on the basis of ideal-gas
mixtures and the viscosities by the method of Wilke
[10]. The diffusion coefficient was obtained from:

D 765x107% [T\
~ P/Pa K

ms 3n

as recommended by Fujii, Kato and Mihara [11] and
taken at (T, + Ty)/2.

*1t may be noted that, for the small values of vapour
velocity used by Mills ez al. [8], the results obtained differed
only slightly from those found when setting u, = 0 in
equation (29) so that the result of Fujii et al. [9], for the
condensate film, reduces to the simple Nusselt equation.

As may be seen from the calculated temperature
differences in the vapour phase and across the conden-
sate film*, the measurements of Mills et al. [8] extend
from those cases where the dominant resistance is that
of the condensate film (lowest gas concentrations and
highest vapour velocities) to those where the gas-phase
resistance is the controlling factor. The fact that the
agreement between the observed and calculated values
is excellent over the whole range lends strong support
to equation (24).

CONCLUDING REMARKS

Perhaps the most important practical result of the
present work is that for condensation on a horizontal
tube [equations (24)]. The fact that this is designed to
be correct for high and low condensation rates,
together with the excellent agreement with a wide
range of steam-air experimental data, suggests that
the equation should be generally satisfactory for other
vapour—gas combinations. The assumption that the
distribution of surface radial velocity is such as to
permit a result of the form:

ShRe™ 1% = F(B,Sc), (32}

as is the case for the flat plate when v, oc x 12, is
probably more realistic in practice than the widely-
used assumption that the surface temperature of a
condenser tube is uniform.
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Table 3. Condensation on a horizontal tube. Comparison of observations 01: Mills et al. [8]
with values calculated using equation (24) for the vapour—gas layer, equation (29) for the
condensate film and the interface condition equation (30)

Uy Ty T, Te—To To—T, Heat flux
100W,,  (m/s) K) (K) X) X) (kW/m?)
Mills Present Mills Present
calculation calculation
0.11 0.689 3310 3228 0.36 7.84 95.6 95.1
0.45 0.811 3158 308.4 1.35 6.05 67.3 71.2
0.75 0.716 317.7 308.6 2.60 6.50 69.0 74.1
1.01 0.674 319.1 309.3 34 6.36 68.5 72.2
1.30 0.601 3210 309.6 485 6.55 68.5 729
1.62 0.591 3212 309.5 5.61 6.09 65.7 68.4
1.94 0.552 3222 309.1 7.01 6.09 66.0 67.6
2.29 0.479 3249 309.8 8.96 6.14 67.3 67.5
2.62 0.439 326.6 310.1 10.49 6.01 66.1 66.2
294 0.415 3276 309.8 11.93 5.87 65.4 64.8
3.70 0.494 316.1 299.4 12.34 436 52.7 49.1
4.13 0.467 316.8 298.6 13.98 422 51.6 47.8
5.43 0372 3160 294.8 17.90 3.30 41.5 39.0
6.30 0.334 3164 2934 20.07 293 39.8 355
7.10 0.320 318.5 2929 22.70 2.90 37.8 355
7.88 0.299 3200 295.2 22.22 2.58 347 328
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EQUATION APPROCHEES POUR LA CONDENSATION AVEC CONVECTION FORCEE,
EN PRESENCE D’'UN GAZ INCONDENSABLE, SUR UNE PLAQUE PLANE
ET UN TUBE HORIZONTAL

Résumé — Pour la condensation d’un mélange vapeur—gaz en mouvement parallélement & un plan
horizontal et normalement 4 un tube horizontal, des équations théoriques approchées sont obtenues qui
relient le flux massique de vapeur d 'écoulement libre et aux conditions de surface froide. Ceci peur étre utilisé
avec des équations convenables donnant le flux de chaleur en fonction de la chute de température a travers le
film de condensat, pour calculer le flux de chaleur pour une vitesse, une composition et une température au
loin données et une température de surface fixée. Les équations sont correctes pour les cas limites de flux de
condensat nul et infini. Dans les cas de la plaque plane, le résultat s’accorde bien avec des solutions
numériques antérieures qui couvrent un large domaine de flux de condensat et pour différentes valeurs du
nombre de Schmidt. Dans le cas du cylindre horizontal, le résultat est en bon accord avec les données
expérimentales pour des mélanges vapeur d’eau-air dans un large domaine de vitesse, de composition, de flux
de condensat et de pression.
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NAHERUNGSGLEICHUNGEN FUR DIE KONDENSATION BEI ERZWUNGENER
KONVEKTION IN GEGENWART EINES NICHTKONDENSIERENDEN GASES AN EINER
EBENEN PLATTE UND AN EINEM WAAGERECHTEN ROHR

Zusammenfassung—Fiir die Kondensation aus einem Dampf-Gas-Gemisch, welches parallel zu einer
ebenen, waagerechten Kondensationsfliche und senkrecht zu einem waagerechten Rohr stromt, wurden
theoretisch begriindete Niherungsgleichungen aufgestellt, die den Dampfmassenstrom mit der
Kondensationsfliche (Kondensationsrate) sowie mit den Bedingungen der freien Stromung und denen der
Kondensatoberfliche verkniipfen. Diese Gleichungen konnen zusammen mit geeigneten Gleichungen
angewandt werden, welche den Wirmestrom (oder die Kondensationsrate) in Abhingigkeit vom
Temperaturabfall liber den Kondensatfilm beschreiben, um den Wirmestrom bei vorgegebener
Geschwindigkeit, Zusammensetzung und Temperatur der ungestorten Stromung sowie der Kondensator-
Oberflichentemperatur zu berechnen. Die Gleichungen sind so aufgestellt, da8 sie die Grenzfille der
verschwindenden und der unendlichen Kondensationsrate richtig beschreiben.

Im Fall der ebenen Platte stimmt das vorliegende Ergebnis sehr gut mit fritheren numerischen Losungen
tiberein, die grofe Bereiche von Kondensationsraten und verschiedene Werte fiir die Schmidt-Zahl umfassen.

Im Fall des waagerechten Zylinders stimmt das gegenwirtige Ergebnis gut mit bei Wasserdampf-Luft-
Gemischen gewonnenen Mefwerten iiberein, welche einen groflen Bereich der Parameter Geschwindigkeit.

Zusammensetzung, Kondensationsrate und Druck umfassen.

MPUBJHWXEHHBIE YPABHEHHWUS OJ11 PACUETA KOHJEHCALWH NAPA [1PU
BBIHY>XJEHHON KOHBEKLIMH B MMPUCYTCTBUM HEKOHJEHCUPYIOUEIOCH TA3A
HA TUIOCKOH [UIACTHHE M IOPU3OHTAJIBHOW TPYEBE

AnnoTaumst — JIis pacyeTa KOHJEGHCAUHMH Mapa M3 IOTOKAa NMApPO-ra30BOH CMECH, HAlPaBJEHHOro
napajfenbHO TUIOCKOH TOPHIOHTANLHOW NMOBEPXHOCTH M NEPNEHAHKYISPHO FOPHIOHTANLHON Tpy6e,
110s1yueHbl IPHGIHKEHHbIE YPABHEHNS, CBA3BIBAIOIUME TUIOTHOCTL NMOTOKA Napa Ha MOBEPXHOCTH KOH-
JeHCAlHH (CKOPOCTh KOHICHCALIHH) C YCJIOBUSMY B CBOGOIHOM MOTOKE M HA MOBEPXHOCTH KOHIEHCATA.
3TN ypaBHEHHS MOTYT HCMOJNb30BATHCA COBMECTHO C COOTBETCTBYIOMIMMH YDaBHCHHSMH, CBA3bIBa-
IOUWMMH TENJIOBOM MOTOK (MNH CKOPOCTb KOHACHCAUHMH) ¢ HEPenaaoM TEMIEpaTyp NOMEPEeK MNICHKH
KOH/IEHCATa, [JIs pacyeTa MIOTHOCTH TEMIOBOrO MOTOKA NpPH 33JaHHBIX CKOPOCTH, COCTaBE H TeMIie-
patype cmecH B cBOGOJHOM MOTOKE, a TaxkKe TEMIEpPaType NMOBEPXHOCTH KOHAEHCATOpa. YpaBHEHHs
CrpaBeIMBBI 115 NPEAENbHBIX Cy4aeB HyNeBoH M GeckoHedHO# CKOPOCTH KoHmeHcaumH. [as ciyyas
NIOCKO#H IaCTHHBI PE3YIbTAaThl XOPOLIO COTIACYIOTCH C NOJIyHEHHBIMH PaHee YHCICHHBIMH PELICHHIMH
B HIHPOKOM AMAna3OHe CKOPOCTEH KOHACHCALMH M NPH pasNHYHBIX 3HaveHuAXx uuciaa MImmara. Ons
Cllydas rOpPM3OHTaJbHOTO LWIMHADA DPE3yiAbTaThl HAaXOAATCA B XOPOILEM COOTBETCTBHH C 3KCHEPH-
MEHTAJIbHLIME JaHHBIMH [UJ1S NapOBO3AYLIHLIX CMeceil B IIMPOKOM [HANa30HE M3MEHEHHMA CKOPOCTH
TeueHUss M COCTABA CMECH, 3 TAKXKE CKOPOCTH KOHJEHCALWM M JaBJICHHUS.



